DHPRUT Combining NGS and optical mapping technology to
 PLANT GENOMIC CENTER improve the assembly of complex plant genomes

Nathalie RODDE, Céline JEZIORSKI, Stéphane CAUET, Céline CHANTRY-DARMON, William MARANDE, Sonia VAUTRIN, Arnaud BELLEC and Hélène BERGES

Among living organisms, plants display a high level of genome complexity due to their large size, variations in polyploidy levels and high percentage of repetitive elements. In a current context of climate change, population growth and limited energy resources, increasing plant genomes knowledge is essential to better understand mechanisms that drive plant adaptation and evolution. Despite the Next Generation Sequencing revolution including the recent long read technologies, it remains challenging to obtain high quality assemblies at the genome scale.
The French Plant Genomic Resources Center (CNRGV) is dedicated to the analysis of plant genome complexity and has recently acquired an Irys System from BioNano Genomics. Using microfluidic and high molecular weight DNA molecules, this technology allows the rapid construction of optical whole genome maps. Such maps are very helpful for genomes analysis and comparison of structural variations among genotypes. We present how the hybrid scaffolding strategy that combines PacBio sequencing and BioNano Genomics optical mapping significantly improves the assembly of complex plant genomes.

Plant Genome Complexity

Improving genome assembly and correction of contig ordering trough Hybrid Scaffolding

Thanks to high quality DNA molecules, optical mapping uses physical reality to link and correct NGS scaffolds. It is now possible to improve assembly quality at the genome level and on targeted regions.

CNRGV
24 Chemin de Borde Rouge
Auzeville - CS 52627
31326 Castanet tolosan cedex
infocnrgv@.inra.fr

Tél: +33 561285253 / Fax: +33 561285564

