
From the seed to the genome: Providing full solution to deliver high quality genome assembly

Nathalie Rodde, Caroline Callot, Stephane Cauet, Charlotte Cravero, Nicolas Théron, William Marande, Nadine Gautier, Nadège Arnal, Elisa Prat, Anthony Théron, Isabelle Dufau, David Pujol, Margaux-Alison Fustier, Arnaud Bellec and Sonia Vautrin

Relying on a 15 years expertise in plant genomics and especially in high quality DNA production from plants, the CNRGV offers a full solution to deliver high quality genomes assemblies. We are in charge of projects from seeds or plants and manage all the steps from the HMW DNA production to the data assembly. We combine complementary technologies such as PacBio HiFi reads and Bionano optical maps. We have developed versatile pipelines to reach chromosome level assemblies that give the possibility to integrate data from a reference genome or genetic maps. We provide additional analysis such as annotation and structural variation detection.

	NGS	Optical Map	Hybrid Scaffold	Hybrid Scaffold + NGS not scaffolded	- 50
Count	552	43	22	532	- 150
N50 length (Mb)	140,549	155,989	178,511	178,511	igth (Mb)
Max length (Mb)	199,767	214,125	206,253	206,253	Scaffold Length (Mb) 100
Total length (Mb)	3042,466	3127,026	3008,080	3045,767	- 20
% of NGS in the hybrid scaffold			98,76		
% of "N" bases in the hybrid scaffold			0,01		0 -
Gaps number in the hybrid scaffold			92		

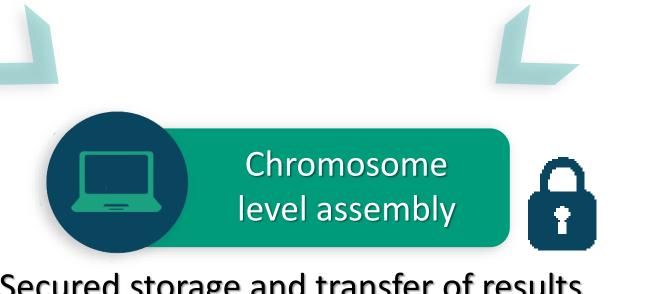
		Asseml	blies PacBio H	liFi	Hybrid Scaffolds (HiFi + optical map)				
Species	Estimated length	Contig nb	Total length (Mb)	N50 (Mb)	Scaffold nb	Total length (Mb)	N50 (Mb)		
Eucalyptus*	550 Mb	659	962	8,52	72	1010	30		
Barley	5 Gb	4 015	4 351	32,64	111	4 190	105		
Rapeseed	1,1 Gb	2 152	1 068	8,4	42	1 005	56		
Sunflower	3,2 Gb	592	3 042	34,8	21	3 003	177		
Wheat	15 Gb	5055	14657	30	324	14 459	204		
Einkorn wheat	5,6 Gb	1142	5149	54	24	5103	522		
Rose*	500 Mb	1105	1024	9,5	61	967	26		
* Heterozygous species									

Sequencing providers

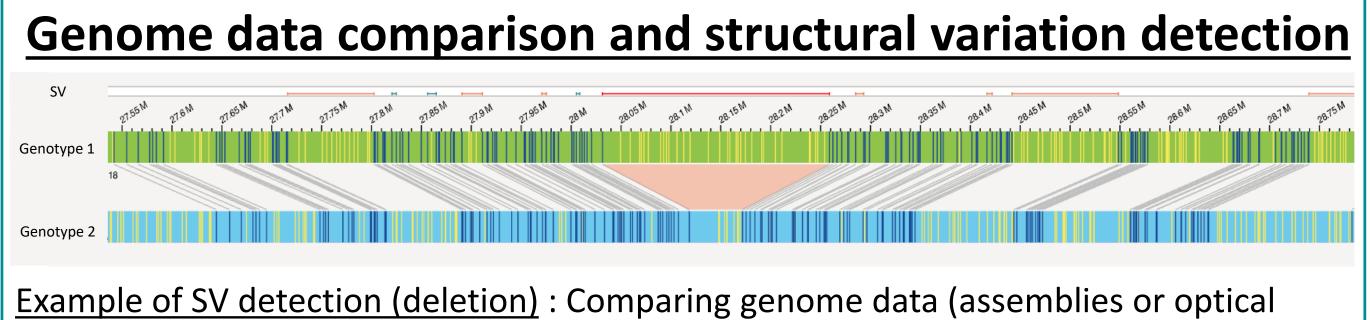
11

1

HiFi reads - CCS (Circular Consensus Sequence)


- Yield : Up to 35Gb CCS 3 passes/SMRT cell Long read lengths up to 25 kb
- High read accuracy >99.9%

Minimum 20X coverage assembled using HiFiasm or Canu assemblers.


OPTICAL MAP DATA

Minimum 60X effective coverage assembled with Bionano tools.

Secured storage and transfer of results

We have developed several analysis pipelines dedicated to specific complex genomes. E.G. : For the rose sequencing project, we have worked on a haplotype separation method based on mapping and scaffolding with genetic map validation.

map) allow structural variation detection (indel, inversion) from kb to Mb scale.

Perspective ? Capture method with Xdrop technology (Samplix®)

Prerequisite :

Targeted sequencing of regions with little prior knowledge on large panels

- Ultra specific PCR markers every 100kb max
- Design on conserved sequences among genotypes to allow diversity analysis

On-going development :

- First capture projects on sunflower and olive tree
- Bioinformatics expertise : adaptation of existing pipeline for chimera identification and elimination

