P0070

PLANT GENOMIC CENTER

Low coverage BAC libraries and BAC NGS sequencing : a powerful tool for comparative genomics of complex plant genomes

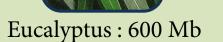
Genséric Beydon¹, Nathalie Rodde¹, Audrey Courtial¹, Elisa Prat¹, Joelle Fourment¹, Nadine Gautier¹, Nadege Arnal¹, Justine Mas¹, William Marande¹, Stephane Cauet¹, Arnaud Bellec¹, Sonia Vautrin¹, Clémentine Vitte², Johann Joets² and Hélène Bergès¹

(1)INRA - CNRGV, Castanet Tolosan, France, (2)INRA/CNRS/Univ Paris-Sud/AgroParisTech, Gif-sur-Yvette, France

The French Plant Genomic Resource Center (CNRGV) is unique in both France and Europe. It is responsible for preserving and maintaining plant genomic resources generated by research. It already supplies laboratories throughout the world with genomic resources, and related tools. The CNRGV interacts with laboratories around the world as services provider or through collaboration. The CNRGV is a reliable partner to assist your genomic projects.

Plant Genome Complexity and Diversity

Very Large genome Size


Drososophila : 120 Mb

Grappewine : 475 Mb

Passiflora : 1.35 Gb

Oil palm : 1.8 Gb

Pepper : 2.7 Gb

Sunflower: 3.5 Gb

Human : 3 Gb

Barley : 5 Gb

Rye : 9.1 Gb

Sugarcane : 12 Gb -12 X

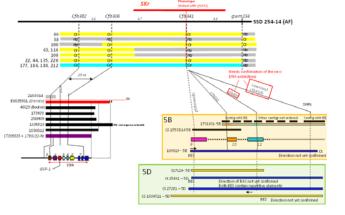
Wheat: 17 Gb **90 % of TE - 6X**

TE : Transposable Elements

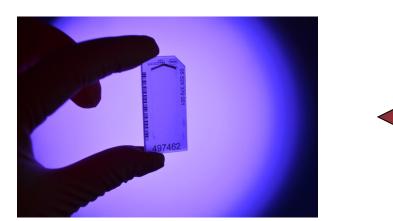
Level of Polyploïdy

CNRGV develops, provides and maintains BAC libraries as essential tools to decipher plant genome complexity and explore diversity.

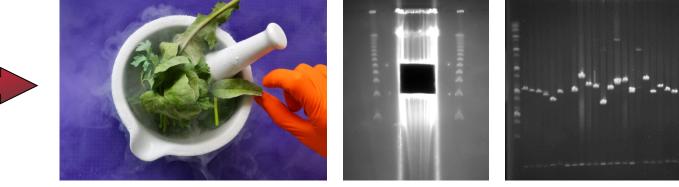
Low coverage BAC library strategy



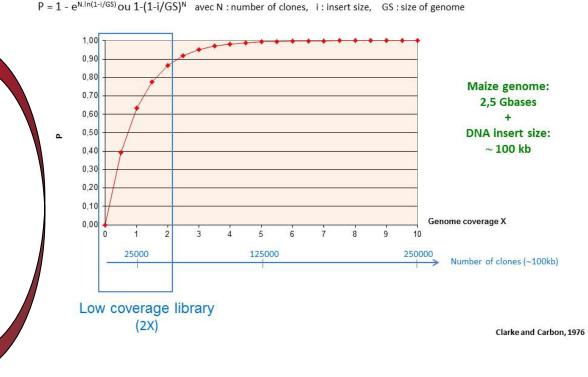
Objective


Access to a BAC Library screening of various genotypes at the lowest cost / delay ratio by decreasing production and storage costs

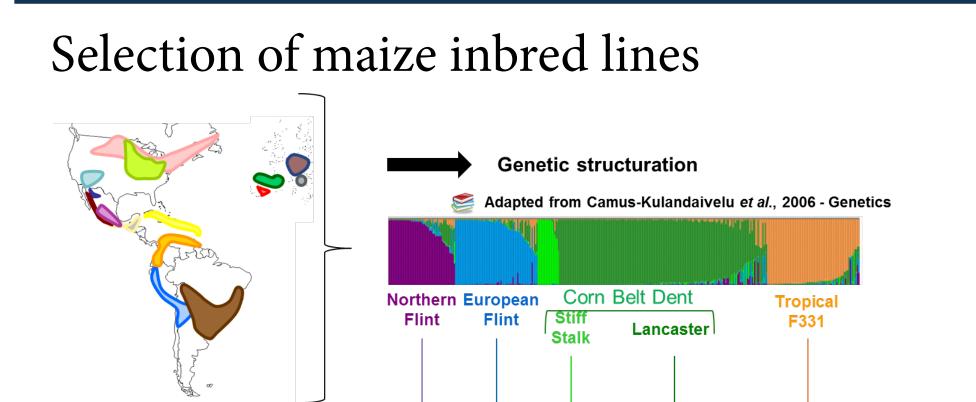
Target projects

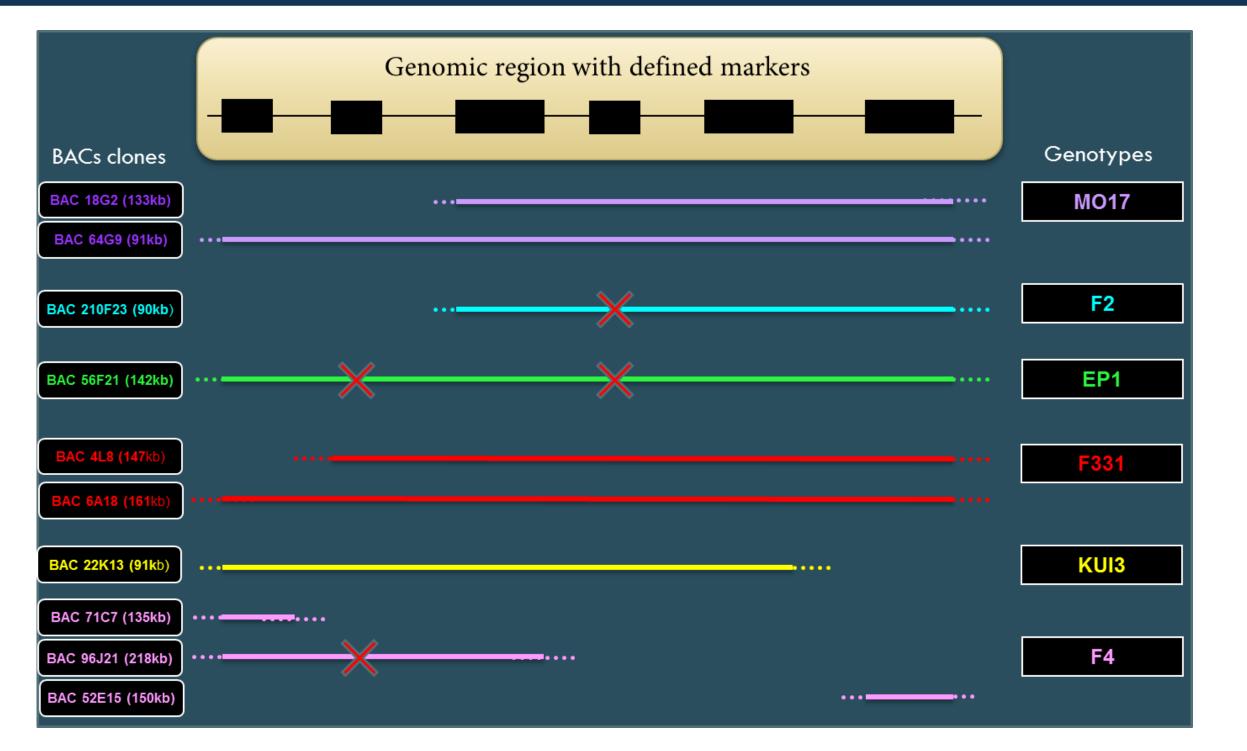

- 1 Establishment of physical maps:
- # On one or few limited zones
- # In genotypes with no BAC libraries available (ex : resistant plant or genotype with a specific interest phenotype)
- # Thanks to sequences or marker available on a model genotype or model plant
- 2 Filling of residual gaps on physical map obtained with classical BAC libraries
- 3 Sequencing of a target zone or genes in several different genotypes / species for syntenic analysis

- Establishment of physical map
- Markers definition


• BAC-Pool Sequencing (454, PacBio) • 35 to 100 x coverage

- Extraction of the nuclei, BAC library construction and characterization
- Rearraying of BACs clones in 384 wells microplates to reach 1-2X genome coverage




- Screening of the plates with specific markers
- Identification of positive BAC clones
- BACs clones characterization (BES, insert size)

Formula to calculate the probability P that a given DNA sequence is present in the bank

Example : comparison of different genomic regions between 7 maize inbred lines

7 genotypes chosen to	FV4	FV2	B73	MO17	F331
represent geographic and genetic diversity		EP1			KUI3

BACs libraries specifications

Z. mays line	FV2	MO17	EP1	F331	KUI3	F4
Enzyme	Hind III	Hind III	Hind III	Hind III	Hind III	Hind III
Vector	pBELOBAC11	pIndigoBAC5	pIndigoBAC5	pIndigoBAC5	pIndigoBAC5	pIndigoBAC5
<i>E. coli</i> cells strain	DH10B	DH10B-T1R	DH10B-T1R	DH10B-T1R	DH10B-T1R	DH10B-T1R
		phage resistant				
Total BAC clones	84864	28800	28416	26112	31104	38400
Plates number	221	51	74	68	81	100
Average insert size	90	135	120	136	115	112
(kb)						
Genome coverage (X)	3	1	1	1	1	1

The low coverage BAC library strategy is a powerful tool to investigate variability in specific genomic regions of interest with a set of well defined markers.

CNRGV 24 Chemin de Borde Rouge Auzeville - CS 52627 31326 Castanet tolosan cedex infocnrgv@toulouse.inra.fr

http://cnrgv.toulouse.inra.fr

