Nadège Arnal

Arrival date : 2013

Status : Technician

Roles :

- Assists the technical team in all the activities of the laboratory

Last completed degree : Bachelor's degree in Biology and Physiology at the University Paul Sabatier in Toulouse

Professional experiences :

- 2001-2013 : involved in the study of the PPR protein family with the team Organites and Reproduction at the INRA in Versailles


    Long Read Sequencing Technology to Solve Complex Genomic Regions Assembly in Plants.

    Journal of Next Generation Sequencing & Applications.

    Added on : 25 August 2016

    Read more

    Authors :

    Arnaud Bellec, Audrey Courtial, Stephane Cauet, Nathalie Rodde, Sonia Vautrin, Genseric Beydon, Nadege Arnal, Nadine Gautier, Joelle Fourment, Elisa Prat, William Marande, Yves Barriere and Helene Berges.

    Journal of Next Generation Sequencing & Applications.

    Abstract :

    Background:
    Numerous completed or on-going whole genome sequencing projects have highlighted the fact that obtaining a high quality genome sequence is necessary to address comparative genomics questions such as structural variations among genotypes and gain or loss of specific function. Despite the spectacular progress that has been made in sequencing technologies, obtaining accurate and reliable data is still a challenge, both at the whole genome scale and when targeting specific genomic regions. These problems are even more noticeable for complex plant genomes. Most plant genomes are known to be particularly challenging due to their size, high density of repetitive elements and various levels of ploidy. To overcome these problems, we have developed a strategy to reduce genome complexity by using the large insert BAC libraries combined with next generation sequencing technologies.

    Results:
    We compared two different technologies (Roche-454 and Pacific Biosciences PacBio RS II) to sequence pools of BAC clones in order to obtain the best quality sequence. We targeted nine BAC clones from different species (maize, wheat, strawberry, barley, sugarcane and sunflower) known to be complex in terms of sequence assembly. We sequenced the pools of the nine BAC clones with both technologies. We compared assembly results and highlighted differences due to the sequencing technologies used.

    Conclusions:
    We demonstrated that the long reads obtained with the PacBio RS II technology serve to obtain a better and more reliable assembly, notably by preventing errors due to duplicated or repetitive sequences in the same region.

    Link :

    http://www.omicsonline.org/open-access/long-read-sequencing-technology-to-solve-complex-genomic-regionsassembly-in-plants-2469-9853-1000128.pdf